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Abstract: Dendrograms and minimum-weight spanning trees are discrete structures which arise in studies of
clustering. The level of dissimilarity of the dendrogram or the minimum weight of the tree may vary
continuously with respect to the primary input data. However, the discrete structure of the tree will vary
discentinuously. Such features occur in the area of statistical cluster analysis. They also arise in political
systems and also in the routing of teletraffic. Some sensitivity resufts can be found for the minimum-weight
spanning tree in relation to the internodal cost matrix. These results may also be carried over to the study of
dendrograms. However, the traditional cluster analysis “cost matrix” depends on attributes and a distance
metric. A change of value of an attribnte will affect all elements of the cost matrix. Some further results can
be obtained for the addition of a new individual (or item) to the dendrogram (or a new node to the minimum-
weight spanning tree).
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1. INTRODUCTION investigations are very important where it may be

costly in terms of capital fo change the strategy.
Computer-based decision support is becoming This paper investigates the sensitivity properties of
increasingly important and popular, and the dendrograms and minimum-weight spanning trees.

underlying mathematical models need to be
thoroughly validated as part of the decision

support system. An element in model validation is . BACKGROUMD

the sensitivity analysis of the model ocutpuis to

changes in the model parameters [Castilio et al., Dendrograms arise in the study of multivariate
1997]. Sensitivity analysis techniques can be data and are a commonly used method of studying
applied in many areas of knowledge and clusters and groupings [Krzanowski, 1988]. The
disciplines  where models and  computer znalysis is usually based on a data matrix of the
simulations are used; for example physics, form

chemistry, environmental sciences, sconomics and

many other areas of application. In most cases, the Atiributes

model output is assumed to vary continuously with Individuals [ x,,  x,,

respect to the input parameters, and there is a wide
range of technigues available to handie such
problems [Campolongo et al, 2000]. However, X=
there are models which are discrete, being based in
graph theory, and these include dendrograms or
cluster analysis, decision trees and minimum-
weight spanning trees. In such cases, the similarity
{dissimilarity}) measure, utility function or cost
function may depend continuously on the input
parameters. However, the structure of the tree, or

- (1)

where the rows refer to individuals and the
columns refer to attributes of the individuals. The
element ¥%;; i a measure of attribute j of the i

strategy for attaining the optimum, is discrete and individual. The nature of the data may be very
depends discontinuously on the input parameters broad, and the data may be continuous, diserete o
[Castillo et al., 1997]. Where the strategy is dichotomous, or qualitative. The similarity matrix
important, then the sensitivity of this discrete

structure needs to be investigated. Such
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is calculated from X, and measures the similarity
5, between the Individuals f; and i; on the
attributes. There are many similarity metrics which
can be used to calculate S, a square nxn matrix,
where n is the number of individuals. The one
important property with respect to  sensitivity
analysis is that s, ; may depend on all elements of

X. Thus a change in any element of X may alter all
elements of 5. The dendrogram or cluster analysis is
consiructed from the similarity matrix S, and a
variety of clustering technigues are available. A
major task is combining two individuals to form a
cluster, or the combining of two clusters. Part of this

percentage
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task involves calculating the similarity/dissimilarity
between the new cluster and other individuals or
clusters. Some of the methods in frequent use
include nearest (or furthesty neighbour, group
average, centroid, median and minimum variance
methods  [Krzanowski, 1988]. These methods
usually result in the reduction in size, or order, of
the dissimilarity matrix, and a recomputation of the
dissimilarity value between the new cluster and the
previous but unaffected clusters. An example of a
dendrogram is shown in Figure | [Diamond, 1993,
page 21]. The left-hand scale on the figure is in
terms of percentage difference, or dissimilarity,
between the individuals, Generally, dissimilarity and
similariry are related inversely and the dendrograms
show increasing scales of dissimilarity.
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Figure 1. Dendrogram of the DNA of the moder higher primates (After Diamond, 1993). Trace back each
pair of modern higher primates to the black dot connecting them. The numbers to the left then give the
percentage difference between the DNAs of those modern primates, while the numbers to the right give the
estimated number of millions of years ago since they last shared a common ancestor.

The minimum-weight spanning tree (MWST) can
be used to obtain a graphical representation of the
dissimilarity matrix. The MWST arises in graph
theory and plays an important role in the solution
strategies of a number of classical operations
research problems such as the Travelling Salesman
Problem [Bertsekas, 1991). Consider a set of n
nodes and let ¢;; be the “cost” associated with the
edge linking node i to node j. This cost may be the
price of flying from node i to node i, as in the
Travelling Salesman Problem, or it can be the cost
of building or maintaining a physical link between
the two nodes. Common examples include
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commugnication links or commodity fransport
{Bertsekas, 19917, The cost matrix is

in the traditional MWST, the costs are usually
assessed on economic grounds, and frequenily
depend on physical features of the terrain along the
edge between nodes 1 and j. There is no analogue
to the attribute matrix X, which determines S(X).



A tree is defined as a connected subset of a graph
which contains no cycles. A spanning tree contains
every node in the network. The MWST is readily
computed, and there are several algorithms
available [Bertsekas, 1991]. Prim’s algorithm
builds up the MWST, starting with the cheapest
edge, by iteratively adding the edge joining the
ciosest node not yet in the tree. Kruskal’s
algorithm constructs the MWST, by iteratively
choosing the cheapest available edge which does
not create a cycle with the edges already chosen.
The Kruskal algorithm iteratively selects the edges
with shortest cost, but leaves these as random
clusters as it proceeds until the above properties
are satisfied,

3 MWST BENSITIVITY AMALYSIS
Consider the undirected graph shown in Figure 2,
where the weights along each edge are as shown.
The associated MWST is shown by solid lnes,
called tree edges, and the dashed lines are non-tree
edges which are not in the minimal tree. The
corresponding cost matrix is

[0 3 5 a a a a a
30 a aa 7 a a
5 a 0 aa 9 6 1

- a aa P 2 a 49 @

a aa 2 0 a a a
a a % a2 a 0 a a
a 7 6 4 a3 a a a

la a 1 9 a a a 0

where a is a large positive number that reflects the
absence of an edge. Technically, a = to reflect
the non-existence of the edge. In practice, a is
larger than the cost of any existing link, and the
MWST algorithms will operate successfully. The
corresponding nearest-neighbour dendrogram is
shown in Figure 3, where cost (instead of
dissimilarity) is shown on the vertical axis.

The tree structure is sensitive to the costs of both
the tree edges and of the non-tree edges. The
analysis is based on the potential cycles in the
graphs. Consider the potential cycle of nodes §, 3,
7 and 4 and the possible range of values of the cost
¢{4,8) on the non-tree edge 4-8. [n this potential
cycle, c(4,8) is larger than the maximum value of
the other edges in this potential cycle, If¢{4,8) =5,
then edge 4-8 will enter the tree and edge 3-7 (with
¢{3,7) = 6) will be dropped from the tree.
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Figure 2. Sampie graph and the associated
minimum-weight spanning tree (shown as solid
lines)

Now consider the tree edge 4-7 and the cost o(4,7);
here ¢(4,8)=9. Then for c(4,7)<9, edge 4-7
remains in the tree. However, for ¢{4,7) > 9, then
edge 4-7 is deleted from the tree and edge 4-8 is
added. The structure of the tree is altered.

The above changes have been discussed with
respect to just one potential cycle in Figure I,
‘Where more potential cycles are present, i.e. nodes |
1, 2, 6 and 3, the above needs appropriate
modification. The algorithm developed by Tarjan
[1982] uses a transmuter matrix to compute the
relevant bound for each of the tree and non-tree
edges.

Now consider the problem of adding an edge to an
existing set of nodes. Thus edge 6-7, with cost
c(6,7) =6 {say} is to be added to the graph. In a
communications network, this is equivaient to
adding a new communication link between two
cities (nodes) in the network. This introduces three
potential cycles into the graph in Figure 2; the
potential cycle 1-2-6-7-3-1 is the important one
which needs to be broken. For ¢{6,7) = 6, then the
highest cost edge is 2-6, and the edge 2-7 is
removed from the tree. Where ¢(6,7) is less than
the largest cost edge in the cycle, then the tree
structure is altered. Where ¢(6,7) is larger than the
largest cost edge in the cycle, then the tree
structure i umaltered. This problem is readily
handled by performing additions to the transmuter
matrix of Tarjan.
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The addition of an extra node to the graph can be
handied using a two-step process. Consider the
graph formed by adding a new node, say node 9, to
the graph of Figure 2. The additional edges and
edee costs are as shown in Figure 4. The first stags
is to attach the new node to the tree, using the
lowest cost edge between node 9 and the sxisting
tree in Figure 2. This is essentially the incremental
step in the Kruskal algorithm, and adds the edge
4-9 to the tree.

Figure 4. Addition of a node and weighted edges.

The second stage is to comsider the resulting
potential cycles and adjust the tree to ensure
minimal weight. These cycles are

iy

In cycle (a), the new edge 4-9 is of minimum cost,
and the remaining links are of equal cost. Either
link can be discarded. In this ¢ase, we retain the
edge 4-7, and this action also handles case{c}.
Note that if ¢(7,9) < ¢(7,4), then the previous tree
edge 4-7 would be removed. In case (b}, the edge
2-6 is the highesi cost in the cycle. This edge is
then deleted from the tree and the edge 6-9 is
added. The final spanning tree is shown in
Figure 5, and the corresponding dendrogram is
shown in Figure 6.

In these simple additions to the graph, the previous
optimal sofution can be used as a starting point for
the extended solution or tree. This is impoitant in
practical applications where the graph or
pre-existing tree may be extensive.

4. SEMSITIVITY OF DENDROGRAMS

The senmsitivity analysis of a dendrogram is
complex, due to several steps in the construction of
the discrete cluster diagram. The attribute matrix,
X, is used in the calculation of the similarity
matrix S, A variety of metrics can be used in this
calculation, including a Euclidean similarity
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distance measure. In this case, a change in any
element of X can alter the values of all the
elements in 8. For other distance measures, such as
the infinity or maximum element norm,
perturbations fo an element of X may have no
effect on 8. The second area of complexity arises
in the agglomeration process, where individuals
and groups are fused. At the fusion, the curreat
similarity matrix is recalculated and reduced in
size. This makes it extremely difficult to follow the
effects of changes of the attribute matrix into the
dendrogram. The method of agglomeration also
affects the structure and properties of the resulting
dendrogram, ie. the centroid method leads to
“gspherical” clusters with high internal affinity,
while the single linkage scheme produces chaining
[Krzanowski, 1988]. The third area of complexity
arises from the discarding of information by the
agglomeration process. Information on direct
affinity is retained, but information on secondary
affinity is lost [Krzanowski, 1988; Bertsekas,
1991}, In terms of the MWST , the costs
(similarities} of the tree edges are retained, but
information on non-iree edges is Jost.

Figure 5. Final spanning tree for the extended
graph,

3 8 1

Figure 6. The dendrogram corresponding to the nine-node spanning tree.

The detailed sensitivity analysis of the dendrogram
is not generally possible. The Kruskal algorithm can
be used on the similarity mairix to generate both the
MWST and the corresponding dendrogram. This
would also require that the corresponding similarity
matrix is not recalculated at each fusion, and thus
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that non-free-edge information is preserved. The
Prim algorithm can also be used, but with the
observation that the full MWST or dendrogram
needs to be computed first, before the development
of the clusters can be considered. With the nearest.
neighbour agglomeration and preservation of the



non-iree-edge values, then the MWST sensitivity
analysis can be applied. The effects of adding the
ninth node in Figured are illustrated by the
dendrograms in Figures 3 and 6. The cluster of
nodes 1, 2, 3 and 8 are not affected by the addition
of node 9. However, the addition of node 9 does
affect the right-hand cluster of nodes 4, 5, 6 and 7.
MNode & is brought into the right-hand cluster, the
topology of the tree is changed, and some of the
fusions occur at lower values of the dissimilarity.
The difficulties in dealing with the dependence
S = 8(X), as well as the problems discussed above,
have led to the comparison of the dendrograms
derived from the original data X and the perturbed
data X + AX. Dendrograms have three atiributes,
label position, branch length and tree topology,
which need to be considered when comparing two
dendrograms. Most of the work on comparing
dendrograms is rooted in the biclogical literature
{Lapointe and Legendre, 1995; Berntson, 1993].
Monte Carlo methods are coften used to derive
probability distributions against which the statistical
significance of variations in dendrogram comparison
indices are assessed. Analyticai results are obviously
difficult to obtain [Krzanowski, 1988].

Methods for comparing two dendrograms include
topological techniques and consensus techniques.
Topological techniques compare the shapes of two
trees, and are related to structural components such
as branching ratio, total exterior path length,
number of external and internal edges, and
asymmetry measures. Berntson {1995] ran a
number of statistical experiments and conciuded
that the total path length was the best measure. van
Pelt [1997] preferred the use of the tree asymmetry
index because of its favourable properties.
Consensus tree methods construct a tree that
represents the agreement or consensus level
between the trees being considersd. The methed of
cophenetic correlation assigns a cophenetic value
(vy) to the similarity between any pair of units,
which is equal to the minimum ultrameiric
dissimilarity, dy, between the two units as given by
the dendrogram [Lapoinie and Legendre, 1995].
Any dendrogram can be represented by a
cophenetic mairix, and there is a one-to-one
correspondence between them. Comparing two
dendrograms then reduces to comparing wo
matrices. Lapointe and Legendre [1995) noted that
such testing may demonstrate a difference between
two dendrograms, but it may not provide detail on
which aspects of the dendrograms have altered.

5. COMCLUSION

The sensitivity analysis of a MWST s easily
handled using the graph theoretic properties which

need io be satisfied by the spanning tree. The
sensitivity properties can be calculated using the
concept of the potential cycle in the graph. Larger
scale problems are readily handled using the
transmuter matrix approach of Tarjan [1982] in
considering one-at-a-time changes to the graph.
Addition of nodes or arcs can also be handled
using the same potential cycle approach. The
solution to a MWST problem can be used as the
starting point for the additions to the graph. This
implies an economy of calculation for small
additions {or subtractions) to the graph. In these
cases, the transmuter matrix approach is less
helpful as it needs to be constructed anew when
new nodes are added. The sensitivity of a
dendrogram may draw on the MWST results in a
limited set of circumstances, i.e. nearest-neighbour
agglomeration. In general, the variations to the
attribute matrix X need to be considerad by totally
recomputing the dendrogram for each data
perturbation. Some statistical work has been done,
but the results are not conclusive,
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